

SR20/SR20-D1 for PV system monitoring

SR20 secondary standard pyranometers: why PV system asset managers prefer a high-accuracy pyranometer with the right paperwork

SR20 is a solar radiation sensor of the highest category in the ISO 9060 classification system: secondary standard. SR20 pyranometer should be used where the highest measurement accuracy is required. SR20-D1 is the digital equivalent of the regular SR20 with analogue output. A unique feature of the SR20 series is that every instrument is individually tested and supplied with the right paperwork.

- Hukseflux secondary standard pyranometers offer the highest accuracy and are supplied with the right paperwork. High-accuracy measurement records of PV system performance increase the value of a PV plant by narrowing down risk profiles.
- A record of instrument performance according to the requirements of the GUM and ISO 9060 standards is essential as proof of instrument measurement accuracy. Only Hukseflux includes this.

Figure 1 SR20 secondary standard pyranometer

Figure 2 accurate PV system performance monitoring

Executive summary

Introduction

PV power plants are increasingly treated as a commercial investment. Traditionally system performance was monitored to allow operators to optimise system performance. Nowadays, in the process of monitoring and selecting measurement equipment, the investment-related considerations often dominate over operational aspects. For asset managers, high-accuracy measurements during PV system operation lead to a narrower specification of proven performance. This increases the value of the power plant, which is relevant in case the plant is financed with borrowed money or if it is sold. Accurate data allow investors to borrow a higher percentage of the total investment or borrow at a lower interest rate. This creates leverage; i.e. potentially multiplied financial gains.

Why it pays off to have improved measurement accuracy

The opportunity to get a better risk-rating justifies a higher investment in measurement equipment.

Why SR20 pyranometer

- The right paperwork: including certificates of temperature response and directional response
- Directional response at 4 azimuth angles
- Best in class calibration uncertainty
- Best in class temperature response (characterised up to + 50 °C, while competitors typically stop at + 40 °C)

Copyright by Hukseflux. Version 1405. We reserve the right to change specifications without prior notice Page 1/3. For Hukseflux Thermal Sensors go to www.hukseflux.com or e-mail us: info@hukseflux.com

What is the right paperwork, and why does it matter

The ISO/IEC Guide 99:2007 International Vocabulary of Metrology states that "type B evaluation of measurement uncertainty may be evaluated based on information obtained from the accuracy class of a verified measuring instrument" [1]. The ISO 9060: 1990 standard, which covers pyranometer classification, demands for secondary standard pyranometers that "all specifications are tested for every individual instrument" [2]. In practice, the leading manufacturers of pyranometers test their secondary standard instruments, but not all supply these instruments with test certificates for the most critical specifications. These critical specifications are temperature dependence (this should be at least up to +50 °C for PV applications) and directional response (this should be up to 80 ° zenith angle in the extreme east and west directions for PV applications). Having the right certificates matters. By having these, you avoid any issues of liability.

Huke	al Sens	ors					ukseflux.c		
Tempe	eratu	re re	spor	ise		Pages: Release	date:	4 20 Decen	nber 20
Product code Product identification Product type Measurand Classification			SR20- T1 serial number 2022 pyranometer hemispherical solar radiation secondary standard (ISO 9060),				ality (WMC	0-No. 8)	
Characterisation r Temperature r Temperature c	a = - b =	$ \begin{array}{llllllllllllllllllllllllllllllllllll$							
Measurement pro Characterised Measurement I	S(T with tem the coe	dependence of sensitivity to ambient temperature $S(T) = S_{0}(a_{1}T + b_{1}T + c)$ with S(T) sensitivity in [10 ⁻⁵ V/(W/m ⁻¹)] at an instrument body temperature, T the instrument body temperature [10 ⁻⁶ V/(W/m ⁻¹)] and C the temperature, T the instrument body temperature in [CC], a, b and C the temperature coefficients determined from a second order polynomial fit.							
Conformity asses		Temperature response is the percentage deviation in sensitivity due change in ambient temperature within an interval of 50 K -10 to $+40$ °C 150 9060 specifies a limit on the temperature response for a second standard pyranemeter of 2 % Conformity verified							
Definition of m Temperature in Acceptance int Conclusion	nterval	cha -10 ISC sta	to +40 ° 9060 spindard pyr	bient te C ecifies a anomete	imperature	e within an	interval o	of 50 K	
Temperature in Acceptance int Conclusion Table 0.3 tem	nterval terval	cha -10 ISC sta Cor pendence te	nge in am to +40 ° 9060 spi ndard pyr nformity v	bient te C ecifies a anomete	imperature	e within an	interval o	of 50 K	
Temperature in Acceptance int Conclusion	nterval terval perature dep EPENDENCE 50	cha -10 ISC sta Cor pendence te	nge in am to +40 ° 9060 spi ndard pyr nformity v	bient te C ecifies a anomete	imperature	e within an	interval o	of 50 K	
Temperature in Acceptance int Conclusion Table 0.3 tem TEMPERATURE DE T [°C]	nterval terval EPENDENCE 50 -2.4% o the user i	cha -10 ISC sta Cor Dendence te TEST 40 -1.4% manual for	ange in an 1 to +40 ° 0 9060 spindard pyrin aformity v st result 30 -0.6%	blent te C ecifies a anomete erified	Imit on the of 2 %	0 +0.5%	-10 +0.5%	of 50 K onse for a : -20 +0.2%	seconda

Figure 3 The right paperwork. Test certificate of temperature response supplied with every individual instrument

Figure 4 Hukseflux product and calibration certificates

Uncertainty evaluation

The uncertainty of a measurement under outdoor conditions depends on many factors. Guidelines for uncertainty evaluation according to the "Guide to Expression of Uncertainty in Measurement" (GUM) can be found in our manuals. We provide spreadsheets to assist in the process of uncertainty evaluation of your measurement.

Hukseflux Thermal Sensors						Hukseflux Thernal Sensors B.V. www.hukseflux.com info@hukseflux.com			
Directional response						Pages: Releas	e date:	4 20 December 2012	
Product code Product identification Product type Measurand Classification			SR20- T1 setial number 2022 pyranometer hemispherical solar radiation secondary standard (ISO 9060), high quality (WMO-No. 8)						
	sation result nal respons	e	≤± 7.7 ₩/	'm²					
Measurement process Characterised parameter		dependence of sensitivity resulting from the direction of irradiance (a measure of the deviations from an ideal cosine response and its azimuthal variation)							
Measurement functions Measurement equipment			$ \begin{array}{l} C_{wa}=5(0)/(S(0)-\cos(\theta)-1)\cdot100~\%\\ \text{with } C_{wa} ~~\text{the deviation from an ideal cosine response at zenith angle \theta in (9\%), S(\theta) the sensitivity to beam irradiance at zenith angle \theta in (10^4~V)(W^{100}), S(\theta) the sensitivity to beam irradiance at normal incidence, \theta the incoming angle from zenith in \{^0, C_{was}=(S(\theta)/S(0)\cos(\theta -1))\cdot\cos(\theta)\cdot1000\\ \text{with } C_{asin}~~the directional response as defined below in [W/m^2] Hukselfux Directional Response Characterisation$						
measure	ment equip	ment	Hukseflux	Direction	nal Response	: Characte	erisation		
Conformit	y assessment n of measu		The direct reported :	tional responsitivity	ponse is the	error cau en measu	sed by assu	ming that the ly direction a beam	
Conformit Definitio Acceptar	y assessment n of measu nce interval	rand	The direct reported : whose no ISO 9060	tional res sensitivity rmal inclo specifies pyranomi	ponse is the / is valid whe fence is 100 a limit on th eter of ± 10	error cau en measu 0 W/m ² . he directio	ised by assu ring from an		
Conformit Definitio Acceptar Conclusi	y assessment n of measu nce interval on	rand	The direct reported : whose no ISO 9060 standard Conformit	tional res sensitivity rmal inclo specifies pyranomi	ponse is the / is valid whe fence is 100 a limit on th eter of ± 10	error cau en measu 0 W/m ² . he directio	ised by assu ring from an	y direction a beam	
Conformit Definitio Acceptar Conclusi Table 0.2 DIRECTION	y assessment n of measu nce interval on directiona NAL RESPONS	rand I response t	The direct reported s whose no ISO 9060 standard Conformit	tional res sensitivity rmal inclo specifies pyranomi	ponse is the / is valid whi dence is 100 a limit on the ster of ± 10 I	error cau en measu 0 W/m ² . he directio	ised by assu ring from an	y direction a beam	
Conformit Definitio Acceptar Conclusi Table 0.2	y assessment n of measu nce interval on directiona NAL RESPONS North	rand I response t E TEST	The direct reported s whose no ISO 9060 standard Conformit rest result East	tional res sensitivity rmal incio specifies pyranomi y verified	ponse is the / is valid whi dence is 100 a limit on the eter of ± 10 J South	error cau en measui 0 W/m ² . he directio W/m ²	ised by assu ring from an onal respons West	e for a secondary	
Conformit Definitio Acceptar Conclusi Table 0.2 DIRECTION	y assessment n of measu nce interval on directiona NAL RESPONS	rand I response t	The direct reported s whose no ISO 9060 standard Conformit	tional res sensitivity rmal inclo specifies pyranomi	ponse is the / is valid whi dence is 100 a limit on the ster of ± 10 I	error cau en measu 0 W/m ² . he directio	ised by assu ring from an	y direction a beam	
Conformit Definitio Acceptar Conclusi Table 0.2 DIRECTIOP azimuth zenith 40°	y assessment n of measu nce interval on directiona NAL RESPONS North Cabs [W/m ²] -7.7	rand I response t & TEST Crel [%] -1.0	The direct reported : whose no ISO 9060 standard Conformit rest result East Cobs [W/m ²] -3.7	Creel	ponse is the / is valid whi fence is 100 a limit on the ter of \pm 10 South Cabs [W/m ²] -4.0	error cau en measu 0 W/m ² . he directic W/m ² C _{rel} [%] -0.5	West Cebs [W/m ²] -6.9	v direction a beam e for a secondary C _{rel} [%] -0.9	
Conformit Definitio Acceptar Conclusi Table 0.2 DIRECTIOI azimuth zenith 40° 60°	y assessment n of measu nce interval on directiona VAL RESPONS North Cabs [W/m ²] -7.7 -4.7	rand I response t & TEST C _{rel} [%] -1.0 -0.9	The direct reported : whose no ISO 9060 standard Conformit rest result East East Cabs [W/m ²] -3.7 -1.8	Cret [%] -0.5 -0.4	ponse is the r is valid while fence is 100 a limit on the ster of \pm 10 South C _{abs} [W/m ²] -4.0 -2.0	error cau en measui 0 W/m ² . he directio W/m ² C _{rel} [%] -0.5 -0.4	West C _{abs} [W/m ²] -6.9 -4.5	v direction a beam e for a secondary c _{rel} [%] -0.9 -0.9	
Conformit Definitio Acceptar Conclusi Table 0.2 DIRECTION azimuth 40° 60° 70°	y assessment n of measu nce interval on directionas (AL RESPORT North Cabs [W/m ²] -7.7 -4.1	rand I response t & TEST Crei [%] -1.0 -0.9 -1.2	The direct reported : whose no ISO 9060 standard Conformit est result East Cobs [W/m ²] -3.7 -1.8 -2.2	Cret [%] Cret [%] -0.5 -0.4 -0.6	ponse is the r is valid white fence is 100 a limit on th teter of \pm 10 Cabs [W/m ²] -4.0 -2.0 -2.1	error cau en measui 0 W/m ² . he directio W/m ² C _{rel} [%] -0.5 -0.4 -0.6	West C _{abs} [W/m ²] -6.9 -4.5 -4.8	creation a beam e for a secondary Crel [%] -0.9 -0.9 -1.4	
Conformit Definitio Acceptar Conclusi Table 0.2 DIRECTION azimuth 2enith 40° 60° 70° 80° Please re Person pe	y assessment n of measu hce interval on directiona (AL RESPONS North Cates [W/m2] -7.7 -4.7 -4.1 -3.9 efer to the forming chai	rand I response t E TEST Cret [%] -1.0 -0.9 -1.2 -2.3 user man	The direct reported : Whose no ISO 9060 standard Conformit est result East Coss [W/m ²] -3.7 -1.8 -2.2 -2.1 uual for an ex	C _{rel} [%] -0.5 -0.4 -0.2	South South Cabs [W/m ²] -2.0 -2.7	error cau en measu 0 W/m ² . he directio W/m ² [%] -0.5 -0.4 -0.6 -1.6 surement	west Cetos [W/m2] -4.8 -4.6 procedure.	y direction a beam e for a secondary C _{rel} [%] -0.9 -0.9 -0.9 -0.9 -0.9 -2.7	
Conformit Definitio Acceptar Conclusi Table 0.2 DIRECTION azimuth zenith 40° 60° 70° 80° Please re	y assessment n of measu hce interval on directiona (AL RESPONS North Cates [W/m2] -7.7 -4.7 -4.1 -3.9 efer to the forming chai	rand I response t E TEST Cret [%] -1.0 -0.9 -1.2 -2.3 user man	The direct reported : Whose no ISO 9060 standard Conformit est result East Coss [W/m ²] -3.7 -1.8 -2.2 -2.1 uual for an ex	C _{rel} [%] -0.5 -0.4 -0.2	ponse is the i is valid white i ence is 100 a limit on the Coss [W/m²] -4.0 -2.0 -2.7 a of the mean	error cau en measu 0 W/m ² . he directio W/m ² [%] -0.5 -0.4 -0.6 -1.6 surement	West C ₂₀₅ [W/m ²] -6.9 -4.5 -4.8 -4.6	y direction a beam e for a secondary C _{rel} [%] -0.9 -0.9 -0.9 -0.9 -0.9 -2.7	

Figure 5 The right paperwork. Test certificate of directional response supplied with every individual instrument

Copyright by Hukseflux. Version 1405. We reserve the right to change specifications without prior notice Page 2/3. For Hukseflux Thermal Sensors go to www.hukseflux.com or e-mail us: info@hukseflux.com

Standards

Applicable instrument classification standards are ISO 9060 and WMO-No. 8. Calibration is according to ISO 9847. PV related standards are ASTM E2848 and IEC 61724.

Demanding applications

SR20's low temperature dependence makes it an ideal candidate for use under very cold and very hot conditions. The temperature dependence of every individual instrument is tested and supplied as a second degree polynomial. This information can be used for further reduction of temperature dependence during post-processing.

Figure 6 SR20 pyranometer side view

See also

- SR20 secondary standard pyranometer analogue output
- SR20-D1 digital secondary standard pyranometer – Modbus protocol
- SR20-TR secondary standard pyranometer with 4-20 mA transmitter
- VU01 ventilation unit for ventilated SR20 / SR20-D1 pyranometer measurements
- alternative instruments: SR11 and LP02 for lower accuracy measurements
- SR12 first class pyranometer for solar energy testing applications
- the making of SR20 documented
- view our complete product range of solar sensors

SR20 specifications

Measurand	hemispherical solar radiation
ISO classification	secondary standard
	pyranometer
Calibration uncertainty	< 1.2 % (k = 2)
Calibration traceability	to WRR
Rated operating temperature	e -40 to +80 °C
range	
Temperature response test	report included, with
of individual instrument	second degree polynomial
	from -30 to +50 °C
Directional response test	report included, with
of individual instrument	measurements at all 4
	azimuth angles up to 80 $^\circ$
	zenith angle
Temperature response	Ū.
SR20	< ± 1 % (-10 to +40 °C)
	< ± 0.4 % (-30 to +50 °C)
	with correction in
	dataprocessing
SR20-D1	<± 0.4 % (-30 to +50 °C)

About Hukseflux

Hukseflux Thermal Sensors, founded in 1993, aims to advance thermal measurement. We offer a complete range of sensors and systems for measuring heat flux, solar radiation and thermal conductivity. We also provide consultancy and services such as performing measurements and designing instrumentation according to customer requirements. Hukseflux is ISO 9001:2008 certified. Customers are served through the main office in Delft in the Netherlands, and locally owned representations in the USA, Brazil, India, China, and Japan.

Referenced documents

- ISO, (2007), ISO/IEC Guide 99:2007
 International Vocabulary of Metrology Basic and general concepts and associated terms (VIM), published by ISO, www.iso.org
- ISO, (1990), ISO 9060: 1990 Solar energy – Specification and classification of instruments for measuring hemispherical solar and direct solar radiation, published by ISO, www.iso.org

Interested in this product? E-mail us at: info@hukseflux.com